Cu/Pd Synergistic Dual Catalysis: Asymmetric α-Allylation of an α-CF3 Amide
2017
Despite the burgeoning demand for fluorine-containing chemical entities, the construction of CF3-containing stereogenic centers has remained elusive. Herein, we report the strategic merger of CuI/base-catalyzed enolization of an α-CF3 amide and Pd0-catalyzed allylic alkylation in an enantioselective manner to deliver chiral building blocks bearing a stereogenic carbon center connected to a CF3, an amide carbonyl, and a manipulable allylic group. The phosphine complexes of CuI and Pd0 engage in distinct catalytic roles without ligand scrambling to render the dual catalysis operative to achieve asymmetric α-allylation of the amide. The stereoselective cyclization of the obtained α-CF3-γ,δ-unsaturated amides to give tetrahydropyran and γ-lactone-fused cyclopropane skeletons highlights the synthetic utility of the present catalytic method as a new entry to non-racemic CF3-containing compounds.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
97
References
54
Citations
NaN
KQI