Nondestructive quantitative characterisation of material phases in metal additive manufacturing using multi-energy synchrotron X-rays microtomography

2019 
Metal additive manufacturing (MAM) has found emerging application in the aerospace, biomedical and defence industries. However, the lack of reproducibility and quality issues are regarded as the two main drawbacks to AM. Both of these aspects are affected by the distribution of defects (e.g. pores) in the AM part. Computed tomography (CT) allows the determination of defect sizes, shapes and locations, which are all important aspects for the mechanical properties of the final part. In this paper, data-constrained modelling (DCM) with multi-energy synchrotron X-rays is employed to characterise the distribution of defects in 316L stainless steel specimens manufactured with laser metal deposition (LMD). It is shown that DCM offers a more reliable method to the determination of defect levels when compared to traditional segmentation techniques through the calculation of multiple volume fractions inside a voxel, i.e. by providing sub-voxel information. The results indicate that the samples are dominated by a high number of small light constituents (including pores) that would not be detected under the voxel size in the majority of studies reported in the literature using conventional thresholding methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    3
    Citations
    NaN
    KQI
    []