Weak-Light Image Enhancement Method Based on Adaptive Local Gamma Transform and Color Compensation

2021 
In weak-light environments, images suffer from low contrast and the loss of details. Traditional image enhancement models are usually failure to avoid the issue of overenhancement. In this paper, a simple and novel correction method is proposed based on an adaptive local gamma transformation and color compensation, which is inspired by the illumination reflection model. Our proposed method converts the source image into YUV color space, and the component is estimated with a fast guided filter. The local gamma transform function is used to improve the brightness of the image by adaptively adjusting the parameters. Finally, the dynamic range of the image is optimized by a color compensation mechanism and a linear stretching strategy. By comparing with the state-of-the-art algorithms, it is demonstrated that the proposed method adaptively reduces the influence of uneven illumination to avoid overenhancement and improve the visual effect of low-light images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []