A polynomial parametrization of torus knots

2007 
For every odd integer $N$ we give an explicit construction of a polynomial curve $\cC(t) = (x(t), y (t))$, where $\deg x = 3$, $\deg y = N + 1 + 2\pent N4$ that has exactly $N$ crossing points $\cC(t_i)= \cC(s_i)$ whose parameters satisfy $s_1 < ... < s_{N} < t_1 < ... < t_{N}$. Our proof makes use of the theory of Stieltjes series and Pad\'e approximants. This allows us an explicit polynomial parametrization of the torus knot $K_{2,N}$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    2
    Citations
    NaN
    KQI
    []