Assessment of irradiated TiO2 nanoparticles on the growth and nutritional components of broccoli

2021 
DOI: 10.15835/nbha49312397 Broccoli is highly tremendously as it is enriched with healthy promoting phytochemicals. This research was undertaken to study the feedback of broccoli to different concentrations of un-irradiated and irradiated (50 kGy of gamma rays) titanium dioxide nanoparticles (TiO2NPs). Un-irradiated and irradiated titanium dioxide characterization was accomplished by FT-IR, XRD, TGA, SEM and TEM. Foliar spray of titanium dioxide was applied to the broccoli in regards to the results of the characterizations. The growth traits; plant height, leaves No. per plant as well as stem diameter of plants and physical quality of heads were measured. Also, nutritional components of heads were determined. The results detailed that vegetative growth and physical quality of heads positively responded to foliar application of titanium dioxide compared to those obtained from control and 50 ppm from irradiated titanium dioxide (ITiO2NPs) gave the highest values of all traits. Regarding to nutritional components of heads, the efficiency of photosynthesis increased by using TiO2 (un-irradiated and irradiated) specially, 50 ppm ITiO2NPs. Application of Ti significantly increased the osmolytes concentrations such as proline, total free amino acids and soluble sugars as well as the extracts of heads sprayed with TiO2NPs concentrations displayed a prospective DPPH free radical scavenging action. Likewise, absorption of other nutrient elements and amino acids pool increased by spraying TiO2NPs. It was found that there are several phytochemical constituents identified by GC-MS that contribute to the biological activity of the methanol extract of broccoli heads that were affected by the use of TiO2NPs. It is clear that from above results, the using of ITiO2NPs specially; 50 ppm stimulated growth, resulting in improved quality of broccoli heads which is ultimately reflected in productivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    0
    Citations
    NaN
    KQI
    []