Promoted antitumor therapy on pancreatic cancer by a novel recombinant human albumin-bound miriplatin nanoparticle.
2021
Abstract Pancreatic cancer is an aggressive and highly lethal disease with a very poor prognosis. Our previous study found miriplatin can inhibit proliferation of various tumor cells, including pancreatic cancer cells. For the chemotherapy of pancreatic cancer, a novel recombinant human serum albumin (rHSA)-bound miriplatin nanoparticles (rHSA-miPt) were constructed by emulsion-diffusion evaporation method. The optimal formulation was composed of 150 mg of rHSA and 30 mg of miriplatin. The key parameters in rHSA-miPt production were 10 min of high-pressure homogenization in a solution with volume ratio of 10:2 of 5% glucose and chloroform. The rHSA-miPt was characterized with a particle size of 61 ± 10 nm, a zeta potential value of -18 ± 5 mV, encapsulation efficiency of 98.4%, drug loading of 16.4%, T1/2 of 13.3 h and Vd of 0.5 L in Sprague Dawley rats. The concentrations of platinum (Pt) in the tumors were 15 and 22-fold higher than those in the blood at 24 and 72 h in tumor-bearing mice, respectively. The internalization of rHSA-miPt through caveolae-dependent pathway. In vitro, the half-maximal inhibitory concentration (IC50) of rHSA-miPt was 12.7 μM vs more than 100 μM of gemcitabine (Gem). The inhibition rate of tumor growth was 76% of rHSA-miPt and 51% of Gem, respectively. Compared with Gem, rHSA-miPt was identified to be safer and less toxic based on body weight loss in mice (0% vs 20%), the survival rate of mice (100% vs 80%) and hematological and biochemical parameters of the mice including leukocytes, lymphocytes, neutrophils, monocytes, serum alanine aminotransferase and aspartate aminotransferase. The present study revealed that rHSA-miPt might be a promising candidate for pancreatic cancer therapy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
0
Citations
NaN
KQI