Control of parallel versus antiparallel molecular arrangements in crystalline assemblies of alkyl β-cellulosides

2021 
Abstract Hypothesis The precise control of parallel versus antiparallel molecular arrangements in synthetic assemblies of biorelated molecules is an attractive research focus from both scientific and technological viewpoints. However, little is known about cellulose-based synthetic assemblies. We hypothesized the existence of potential parameters, such as temperature, salt concentration, salt species, and solvent species, for controlling the molecular arrangement in assemblies of alkyl β-cellulosides with different alkyl chain lengths. Experimental The self-assembly of alkyl β-cellulosides was triggered by neutralization-induced water insolubilization. The crystal structures of the cellulose moieties in the assemblies were characterized by attenuated total reflection-Fourier transform infrared absorption spectroscopy and wide-angle X-ray diffraction measurements. The morphologies of the assemblies were also characterized by scanning electron, atomic force, and transmission electron microscopy. Findings The temperature for the self-assembly, the concentration and species of inorganic salt in the self-assembly solution, and the solvent species (namely, the addition of water-miscible organic solvents into the self-assembly solution) strongly affected the molecular arrangement of the assemblies. The observations suggested that hydrophobic effects between the alkyl groups of the alkyl β-cellulosides and/or interactions of the alkyl β-cellulosides with solvent species were potential factors for controlling the molecular arrangement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []