In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources - Role of PAHs

2018 
Abstract The bioactivity of the extractable organic matter (EOM) of particulate matter (PM) exhausted from major urban combustion sources, including residential heating installations (wood-burning fireplace and oil-fired boiler) and vehicular exhaust from gasoline and diesel cars), was investigated in vitro by employing multiple complementary cellular and bacterial assays. Cytotoxic responses were investigated by applying the MTT ((3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)) bioassay and the lactate dehydrogenase (LDH) release bioassay on human lung cells (MRC-5). Sister Chromatids Exchange (SCE) genotoxicity was measured on human peripheral lymphocytes. Lipid peroxidation potential via reactive oxygen species (ROS) was evaluated on E. coli bacterial cells by measuring the malondialdehyde (MDA) end product. Furthermore, the DNA damage induced by the organic PM fractions was evaluated by the reporter (β-galactosidase) gene expression assay in the bacterial cells, and, by examining the fragmentation of chromosomal DNA on agarose gel electrophoresis. The correlations between the source PM-induced biological endpoints and the PM content in polycyclic aromatic hydrocarbons (PAHs), as typical molecular markers of combustion, were investigated. Fireplace wood smoke particles exhibited by far the highest content in total and carcinogenic PAHs followed by oil boilers, diesel and gasoline emissions. However, in all bioassays, the total EOM-induced toxicity, normalized to PM mass, was highest for diesel cars equipped with Diesel Particle Filter (DPF). No correlation between the toxicological endpoints and the PAHs content was observed suggesting that cytotoxicity and genotoxicity are probably driven by other extractable organic compounds than the commonly measured unsubstituted PAHs. Clearly, further research is needed to elucidate the role of PAHs in the biological effects induced by both, combustion emissions, and ambient air particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    19
    Citations
    NaN
    KQI
    []