Reduced Graphene Oxide Supported Cobalt-Calcium Phosphate Composite for Electrochemical Water Oxidation

2021 
We report the oxygen evolution reaction (OER) catalyst composed of cobalt–calcium phosphate on reduced graphene oxide (CoCaP/rGO). Our catalyst is prepared by the anodic electrolysis of calcium phosphate/rGO mixture loaded on indium-tin-oxide (ITO) in Co2+ aqueous solution. TEM, XPS and XRD experiments confirm that the crystal phase of calcium phosphate (CaP) is transferred into an amorphous phase of calcium oxide with phosphate (5.06 at%) after anodic electrolysis. Additionally, the main cation component of calcium is replaced by cobalt ion. The current–voltage characteristics of CoCaP/rGO showed a shoulder peak at 1.10 V vs. NHE, which originated from Co2+ to higher oxidation states (Co3+ or Co4+) and a strong wave from water oxidation higher +1.16 V vs. NHE at neutral condition (pH 7). CoCaP and CoCaP/rGO showed 4.8 and 10 mA/cm2 at 0.47 V of overpotential, respectively. The enhanced OER catalytic activity of CoCaP/rGO arises from the synergetic interaction between the amorphous phase of CoCaP and electric conducting graphene sheets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []