Salicylate and phthalate pathways contributed differently on phenanthrene and pyrene degradations in Mycobacterium sp. WY10

2019 
Abstract Mycobacterium sp. WY10 was a highly effective PAHs-degrading bacterium that can degrade phenanthrene (PHE, 100 mg L −1 ) completely within 60 h and 83% of pyrene (PYR, 50 mg L -1 ) in 72 h. In this study, ten and eleven metabolites, respectively, were identified in PHE and PYR degradation cultures, and a detailed PHE and PYR metabolism maps were constructed based on the metabolic results. The strain WY10 degraded PHE and PYR with initial dioxygenation mainly on 3,4- and 4,5-carbon positions, respectively. Thereafter, PYR degradation entered the PHE degradation pathway via the ortho -cleavage. It was observed that the “lower pathway” of PHE and PYR degradations were different. Based on the kinetics of residual metabolites, PHE was degraded in a dominant phthalate pathway and a minor salicylate pathway. However, both phthalate and salicylate pathways played important roles on PYR degradation. The WY10 genome revealed there were fifty-three genes related to PAHs degradations, including a complete gene set for PHE and PYR degradation via the phthalate pathway. The candidate gene/ORF, BOH72_19755, encoding salicylate synthase might contribute in the salicylate pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    20
    Citations
    NaN
    KQI
    []