The dimerization of glucagon‐like peptide‐2 MIMETIBODY™ is linked to leucine‐17 in the glucagon‐like peptide‐2 region
2012
Glucagon-like peptide-2 (GLP-2) is a member of the glucagon multigene family that is produced by intestinal enteroendocrine cells in response to food intake. GLP-2 stimulates growth of the intestinal epithelium, enhances its barrier functions, and increases nutrient uptake. Therefore, a GLP-2 agonist may be efficacious in human diseases characterized by malabsorption or injury to the gastrointestinal epithelium. MIMETIBODY™ refers to a proprietary scaffold developed to extend the half-life of rapidly cleared peptides. It consists of a peptide linked to a scaffold that contains sequence elements from a human immunoglobulin G including those that allow recycling through the FcRn. The GLP-2 sequence was engineered into the MIMETIBODY™ scaffold. The primary state of both GLP-2 and the GLP-2 MIMETIBODY™ in DPBS was a noncovalently associated dimer indicative of self-interaction. The increased heterogeneity and the decreased lot-to-lot reproducibility caused by the self-interaction of therapeutic proteins are a challenge to drug development. A similar protein, GLP-1 MIMETIBODY™, contains the related GLP-1 peptide and does not form a dimer under similar conditions. Therefore, to minimize or abrogate dimerization, several variants were made by substituting GLP-2 amino acids with the corresponding amino acids from GLP-1. Molecular weight and secondary structure analyses reveal that substituting leucine for glutamine at position 17 (L17Q) reduces dimerization and α-helix content yet retains bioactivity. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
3
Citations
NaN
KQI