Active Acetylcholinesterase Immobilization on a Functionalized Silicon Surface

2015 
In this work, we studied the attachment of active acetylcholinesterase (AChE) enzyme on a silicon substrate as a potential biomarker for the detection of organophosphorous (OP) pesticides. A multistep functionalization strategy was developed on a crystalline silicon surface: a carboxylic acid-terminated monolayer was grafted onto a hydrogen-terminated silicon surface by photochemical hydrosilylation, and then AChE was covalently attached through amide bonds using an activation EDC/NHS process. Each step of the modification was quantitatively characterized by ex-situ Fourier transform infrared spectroscopy in attenuated-total-reflection geometry (ATR-FTIR) and atomic force microscopy (AFM). The kinetics of enzyme immobilization was investigated using in situ real-time infrared spectroscopy. The enzymatic activity of immobilized acetylcholinesterase enzymes was determined with a colorimetric test. The surface concentration of active AChE was estimated to be Γ = 1.72 × 1010 cm–2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    17
    Citations
    NaN
    KQI
    []