A refined understanding of compressibility effects on the stability of drift ballooning modes

2017 
A study is conducted on the impact of plasma compressibility on the stability of drift ballooning modes. The two-fluid and four-field model developed by Hazeltine et al. [Phys. Fluids 28, 2466 (1985)] is employed in this study. Results of linear numerical simulations show that finite compressibility destabilizes ballooning modes which are otherwise stable due to the ion diamagnetic drift effect. A systematic study reveals that the parallel compressibility originating from the two-fluid effect, rather than the drift-acoustic wave coupling suggested by Hastie et al. [Phys. Plasmas 10, 4405 (2003)], plays the most important role in destabilizing the ballooning modes. An analytic evaluation of the dispersion relation underpins the strong sensitivity of this parallel compressibility term in the ballooning mode stability. The potential impact of this new understanding on the physics of small edge localized modes is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []