Helminth egg analysis platform (HEAP): An opened platform for microscopic helminth egg identification and quantification based on the integration of deep learning architectures.

2021 
Abstract Background Millions of people throughout the world suffer from parasite infections. Traditionally, technicians use manual eye inspection of microscopic specimens to perform a parasite examination. However, manual operations have limitations that hinder the ability to obtain precise egg counts and cause inefficient identification of infected parasites on co-infections. The technician requirements for handling a large number of microscopic examinations in countries that have limited medical resources are substantial. We developed the helminth egg analysis platform (HEAP) as a user-friendly microscopic helminth eggs identification and quantification platform to assist medical technicians during parasite infection examination. Methods Multiple deep learning strategies including SSD (Single Shot MultiBox Detector), U-net, and Faster R-CNN (Faster Region-based Convolutional Neural Network) are integrated to identify the same specimen allowing users to choose the best predictions. An image binning and egg-in-edge algorithm based on pixel density detection was developed to increase the performance. Computers with different operation systems can be gathered to lower the computation time using our easy-to-deploy software architecture. Results A user-friendly interface is provided to substantially increase the efficiency of manual validation. To adapt to low-cost computers, we architected a distributed computing structure with high flexibilities. Conclusions HEAP serves not only as a prediction service provider but also as a parasitic egg database of microscopic helminth egg image collection, labeling data and pretrained models. All images and labeling resources are free and accessible at http://heap.cgu.edu.tw . HEAP can also be an ideal education and training resource for helminth egg examination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []