An Ising Hamiltonian solver based on coupled stochastic phase-transition nano-oscillators
2021
Combinatorial optimization problems belong to the non-deterministic polynomial time (NP)-hard complexity class, and their computational requirements scale exponentially with problem size. They can be mapped into the problem of finding the ground state of an Ising model, which describes a physical system with converging dynamics. Various platforms, including optical, electronic and quantum approaches, have been explored to accelerate the ground-state search, but improvements in energy efficiencies and computational abilities are still required. Here we report an Ising solver based on a network of electrically coupled phase-transition nano-oscillators (PTNOs) that form a continuous-time dynamical system (CTDS). The bi-stable phases of the injection-locked PTNOs act as artificial Ising spins and the stable points of the CTDS act as the ground-state solution of the problem. We experimentally show that a prototype with eight PTNOs can solve an NP-hard MaxCut problem with high probability of success (96% for 600 annealing cycles). We also show via numerical simulations that our Ising Hamiltonian solver can solve MaxCut problems of 100 nodes with energy efficiency of 1.3 × 107 solutions per second per watt, offering advantages over other approaches including memristor-based Hopfield networks, quantum annealers and photonic Ising solvers. An Ising solver that is based on a network of electrically coupled phase-transition nano-oscillators, which provides a continuous-time dynamical system, can be used to efficiently solve a non-deterministic polynomial time (NP)-hard MaxCut problem.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
3
Citations
NaN
KQI