Fracture, aggregation and segregation in dry, granular flows

2021 
Particle fracture, the formation of small particles as the result of the breakage of large ones, and aggregation, the formation of large particles as the result of the combination of small ones, have important implications in industry (e.g. food processing, pharmaceutical production) and geophysics (e.g., snow avalanches and rock debris flows). Also, the presence of particles of different size that result from fracture and aggregation can induce segregation, resulting in the migration of large and small particles to different regions of the flow. Here, we formulate simple models for fracture and agglomeration and analyze the evolution of measures of the relative concentration of two sizes of spheres due the combined effects of fracture, aggregation, and segregation in dense, dry, granular flows. Particle breakage and combination is influenced by the frequency of collisions, by the local number density of the spheres, and by the particle kinetic energy. Segregation is predicted using a kinetic theory proposed by Larcher & Jenkins [2].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []