Image quality assessment for inpainted images via learning to rank
2019
This paper proposes an image quality assessment (IQA) method for image inpainting, aiming at selecting the best one from a plurality of results. It is known that inpainting results vary largely with the method used for inpainting and the parameters set. Thus, in a typical use case, users need to manually select the inpainting method and the parameters that yield the best result. This manual selection takes a great deal of time and thus there is a great need for a way to automatically estimate the best result. Unlike existing IQA methods for inpainting, our method solves this problem as a learning-based ordering task between inpainted images. This approach makes it possible to introduce auto-generated training sets for more effective learning, which has been difficult for existing methods because judging inpainting quality is quite subjective. Our method focuses on the following three points: (1) the problem can be divided into a set of “pairwise preference order estimation” elemental problems, (2) this pairwise ordering approach enables a training set to be generated automatically, and (3) effective feature design is enabled by investigating actually measured human gazes for order estimation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
4
Citations
NaN
KQI