Subject headings: Inelasticity; Viscoelasticity; Damping; Wave propagation; Earthquake engineering; Ground motion; Nonlinear response; Finite element method.

2009 
Hysteretic damping is often modeled by means of linear viscoelastic approaches such as “nearly constant Attenuation (NCQ)” models. These models do not take into account nonlinear effects either on the stiffness or on the damping, which are well known features of soil dynamic behavior. The aim of this paper is to propose a mechanical model involving nonlinear viscoelastic behavior for isotropic materials. This model simultaneously takes into account nonlinear elasticity and nonlinear damping. On the one hand, the shear modulus is a function of the excitation level; on the other, the description of viscosity is based on a generalized Maxwell body involving non-linearity. This formulation is implemented into a 1D finite element approach for a dry soil. The validation of the model shows its ability to retrieve low amplitude ground motion response. For larger excitation levels, the analysis of seismic wave propagation in a nonlinear soil layer over an elastic bedrock leads to results which are physically satisfactory (lower amplitudes, larger time delays, higher frequency content).
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []