A Brillouin laser optical atomic clock

2021 
Optical clocks have achieved accuracies better than 1 part in 1018 and are now some of the best measurement devices ever made, significantly surpassing previous-generation microwave clocks in terms of stability. A significant challenge is to transition optical clocks to field environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics. In this talk, I discuss the use of a stimulated-Brillouin-scattering (SBS) laser based on a compact fiber resonator to run an optical clock, demonstrating a potential portable replacement for the bulk-cavity-stabilized lasers typically used as the stable oscillator in these systems. We achieve a short-term stability of 3.9 x 10-14 in 1 s, outperforming the best microwave clocks. I also discuss our development of integrated photonics and detectors for chip-based ion traps as a pathway towards miniaturizing the clock’s atomic reference through elimination of free-space optics for light delivery and collection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []