Effect of the interface on femtosecond laser damage of a metal-dielectric low dispersion mirror

2021 
Metal-dielectric low dispersion mirrors (MLDM) have a promising application prospect in petawatt (PW) laser systems. We studied the damage characteristics of MLDM and found that the damage source of MLDM (Ag + Al2O3+SiO2) is located at the metal-dielectric interface. We present the effect of the interface on the femtosecond laser damage of MLDM. Finite element analysis shows that thermal stress is distributed at the interface, causing stress damage which is consistent with the damage morphology. After enhancing the interface adhesion and reducing the residual stress, the damage source transfers from the interface to a surface SiO2 layer, and the damage threshold can be increased from 0.60 J/cm2 to 0.73 J/cm2. This work contributes to the search for new techniques to improve the damage threshold of MLDM used in PW laser systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []