Eliminating higher-multiplicity intersections. III. Codimension 2

2021 
We study conditions under which a finite simplicial complex K can be mapped to ℝd without higher-multiplicity intersections. An almost r-embedding is a map f: K → ℝd such that the images of any r pairwise disjoint simplices of K do not have a common point. We show that if r is not a prime power and d ≥ 2r + 1, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost r-embedding of the (d +1)(r − 1)-simplex in ℝd. This improves on previous constructions of counterexamples (for d ≥ 3r) based on a series of papers by M. Ozaydin, M. Gromov, P. Blagojevic, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If r ≥ 3 and if K is a finite 2(r − 1)-complex, then there exists an almost r-embedding K → ℝ2r if and only if there exists a general position PL map f: K → ℝ2r such that the algebraic intersection number of the f-images of any r pairwise disjoint simplices of K is zero. This result can be restated in terms of a cohomological obstruction and extends an analogous codimension 3 criterion by the second and fourth authors. As another application, we classify ornaments f: S3 ⊔ S3 ⊔ S3 → ℝ5 up to ornament concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for r = 2 is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []