Application of pinewood waste-derived biochar for the removal of nitrate and phosphate from single and binary solutions.

2021 
Abstract We developed biochar by pyrolysis of pinewood wastes at different temperatures and investigated its potential to nitrate and phosphate from single and binary solutions. An in-depth characterization of biochar was carried out to study its physical, surface morphological and chemical characteristics using X-ray diffraction, Fourier transform infrared and scanning electron microscopy analyses. The impact of pyrolysis temperatures (300 – 600 0C) on the biochar yield, the biochar’s elemental composition, and its adsorption characteristics was examined. Biochar produced at 600 0C showed a maximum uptake for both nitrate and phosphate due to its high C content (63.8%), pore volume (0.201 cm3/g), surface area (204.2 m2/g) and reduced acidic binding groups. The influence of pH, initial solute concentrations, contact time on the removal of a single solute at a time by biochar was examined. Results revealed that pinewood-derived biochar had its maximum performance at pH 2, with predicted equilibrium uptakes of 20.5 and 4.20 mg/g for phosphate and nitrate, respectively at initial solute concentrations of 60 mg/L within 360 min. The single solute isotherm was studied using the Freundlich, Langmuir and Toth models, and kinetics was described using the pseudo-first and -second order models. While using dual-solutes, biochar showed preference towards phosphate as confirmed by high affinity factor. The dual-solute kinetic experiments showed that around 95% of phosphate was removed within 45 min, whereas it took 240 min to achieve 95% total nitrate removal from the mixture. Thus, the biochar removes phosphate preferentially with high selectivity as compared to nitrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []