Optimizing the riparian zone width near a river for controlling lateral migration of irrigation water and solutes

2019 
Author(s): Phogat, V; Cox, JW; Kookana, Rai S; Simůnek, J; Pitt, T; Fleming, N | Abstract: © 2019 Riparian zones are essential to preserve water quality of rivers adjacent to large areas of irrigated agriculture. We used HYDRUS (2D/3D) to quantify the long-term (8 years) influence of crops (almonds, wine grapes and potato-carrot) irrigated with recycled water on water and solute exchange at the Gawler River interface in relation to vegetation buffer widths from 10 to 110 m. We found that under almond and annual horticulture the likely average annual water flow from the irrigated area to the river was nearly twice as much (2.1 and 1.8, respectively) that under wine grapes. The hydraulic exchange at river interface for different irrigated crops was found to be sensitive to the buffer widths. For wine grapes, almonds and annual horticulture, the average annual hydraulic balance reached an equilibrium at 20, 65 and 55 m buffer widths, respectively. Furthermore, for wine grapes, with a 20 m buffer width, the average annual load of salts became negligible. This study shows that buffer widths of 20, 60, and 40 m for irrigated wine grapes, almond, and annual horticulture, respectively, are needed to restrict the migration of salts to the river. Further refinements are possible by incorporating the influence of preferential flow paths, improved water stress response functions, and addressing the data limitations for calibration of the model for solute dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    6
    Citations
    NaN
    KQI
    []