When Fear Shrinks the Brain: A Computational Model of the Effects of Posttraumatic Stress on Hippocampal Volume.

2021 
Post-traumatic stress disorder (PTSD) is a psychiatric disorder often characterized by the unwanted re-experiencing of a traumatic event through nightmares, flashbacks, and/or intrusive memories. This paper presents a neurocomputational model using the ACT-R cognitive architecture that simulates intrusive memory retrieval following a potentially traumatic event (PTE) and predicts hippocampal volume changes observed in PTSD. Memory intrusions were captured in the ACT-R rational analysis framework by weighting the posterior probability of re-encoding traumatic events into memory with an emotional intensity term I to capture the degree to which an event was perceived as dangerous or traumatic. It is hypothesized that (1) increasing the intensity I of a PTE will increase the odds of memory intrusions, and (2) increased frequency of intrusions will result in a concurrent decrease in hippocampal size. A series of simulations were run and it was found that I had a significant effect on the probability of experiencing traumatic memory intrusions following a PTE. The model also found that I was a significant predictor of hippocampal volume reduction, where the mean and range of simulated volume loss match results of existing meta-analyses. The authors believe that this is the first model to both describe traumatic memory retrieval and provide a mechanistic account of changes in hippocampal volume, capturing one plausible link between PTSD and hippocampal volume.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []