Optical absorption edge broadening in thick InGaN layers: Random alloy atomic disorder and growth mode induced fluctuations

2018 
To assess the impact of random alloying on the optical properties of the InGaN alloy, high-quality InxGa1−xN (0 < x < 0.18) epilayers grown on c-plane free-standing GaN substrates are characterized both structurally and optically. The thickness (25–100 nm) was adjusted to keep these layers pseudomorphically strained over the whole range of explored indium content as checked by x-ray diffraction measurements. The evolution of the low temperature optical absorption (OA) edge linewidth as a function of absorption energy, and hence the indium content, is analyzed in the framework of the random alloy model. The latter shows that the OA edge linewidth should not markedly increase above an indium content of 4%, varying from 17 meV to 30 meV for 20% indium. The experimental data initially follow the same trend with, however, a deviation from this model for indium contents exceeding only ∼2%. Complementary room temperature near-field photoluminescence measurements carried out using a scanning near-field optical mi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    24
    Citations
    NaN
    KQI
    []