Peptidyl prolyl cis-trans isomerase activity of cyclophilin A in functional homo-oligomeric receptor expression
1997
The functional expression of homo-oligomeric α7 neuronal nicotinic and type 3 serotonin receptors is dependent on the activity of a cyclophilin. In this paper we demonstrate that the mechanism of cyclophilin action during functional homo-oligomeric receptor expression in Xenopus oocytes is distinct from the calcineurin-dependent immunosuppressive mechanism by showing that a nonimmunosuppressive analog of cyclosporin A (CsA), SDZ 211–811, reduces functional receptor expression to the same extent as CsA. The cytoplasmic subtype of cyclophilin, cyclophilin A (CyPA), appears to be required for functional receptor expression. This is because overexpression of CyPA and a CyPA mutant that is deficient in CsA binding activity reverses CsA-induced reduction in functional receptor expression. The mechanism of action of CyPA is likely to involve its prolyl isomerase activity because a mutant CyPA with a single amino acid substitution (arginine 55 to alanine) that is predicted to produce a 1000-fold attenuation in isomerase activity fails to reverse the cyclosporin A effect. Our data also suggest that CyPA does not form a stable complex with receptor subunits.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
61
Citations
NaN
KQI