Microstructural and Mechanical Characterization of Dissimilar Metal Welding of Inconel 625 and AISI 316L

2018 
This study investigated the microstructure of the dissimilar metal welding of Inconel 625 and AISI 316L using Continuous Current Gas Tungsten Arc Welding (CCGTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) processes with ERNiCr-3, TIG 316L and twisted (ERNiCr-3 and TIG 316L) fillers. Microstructure examinations were carried out using an optical microscope and Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray (EDAX). The results of the study showed the existence of a partially melted zone (PMZ) on the AISI 316L side. Weld zone (WZ) analysis showed the existence of a multi-directional grain growth on the 316L side in all specimens, although less growth was found on the Inconel 625 side. Grain growth almost disappeared using PCGTAW with twisted fillers. SEM/EDAX investigations indicated that secondary deleterious secondary phases were tiny and white in five experiments. However, a meager amount of precipitates occurred in PCGTA welding with twisted fillers. Moreover, these were particularly innocent precipitates, represented by black dots in images, whereas other tiny white secondary phases are known to be brittle. As a result, PCGTA welding with twisted fillers exhibited the best metallurgical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    19
    Citations
    NaN
    KQI
    []