Interstellar absorptions towards the LMC: Small-scale density variations in Milky Way disc gas
2010
Observations show that the ISM contains sub-structure on scales less than 1 pc, detected in the form of spatial and temporal variations in column densities or optical depth. Despite the number of detections, the nature and ubiquity of the small-scale structure in the ISM is not yet fully understood. We use UV absorption data mainly from FUSE and partly from STIS of six LMC stars (Sk-67{\deg}111, LH54-425, Sk-67{\deg}107, Sk-67{\deg}106, Sk-67{\deg}104, and Sk-67{\deg}101), all located within 5 arcmin of each other, and analyse the physical properties of the Galactic disc gas in front of the LMC on sub-pc scales. We analyse absorption lines of a number of ions within the UV spectral range. Most importantly, interstellar molecular hydrogen, neutral oxygen, and fine-structure levels of neutral carbon have been used in order to study changes in the density and the physical properties of the Galactic disc gas over small angular scales. While most species do not show any significant variation in their column densities, we find an enhancement of almost 2 dex for H_2 from Sk-67{\deg}111 to Sk-67{\deg}101, accompanied by only a small variation in the OI column density. Based on the formation-dissociation equilibrium, we trace these variations to the actual density variations in the molecular gas. On the smallest spatial scale of < 0.08 pc, between Sk-67{\deg}107 and LH54-425, we find a gas density variation of a factor of 1.8. The line of sight towards LH54-425 does not follow the relatively smooth change seen from Sk-67{\deg}101 to Sk-67{\deg}111, suggesting that sub-structure might exist on a smaller spatial scale than the linear extent of our sight-lines. Our observations suggest that the detected H_2 in these six lines of sight is not necessarily physically connected, but that we are sampling molecular cloudlets with pathlengths < 0.1-1.8 pc and possibly different densities.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
11
Citations
NaN
KQI