Recombinant expression and characterization of two glycoside hydrolases from extreme alklinphilic bacterium Cellulomonas bogoriensis 69B4(T).

2020 
Two novel glycoside hydrolases were cloned from the genomic DNA of alklinphilic bacterium Cellulomonas bogoriensis 69B4(T) and functionally expressed in Escherichia coli. The two enzymes shared less than 73% of identities with other known glycosidases and belonged to glycoside hydrolase families 5 and 9. Recombinant Cel5A exhibited optimum activity at pH 5.0 and at a temperature of 70 degrees C, and Cel9A showed optimum activity at pH 7.0 and at a temperature of 60 degrees C. The two enzymes exhibited activity at alkaline pH 11 and were stable over a wide range of pH. The maximum activities of Cel5A and Cel9A were observed in 0.5 M NaCl and 1 M KCl, respectively. In addition, these two enzymes exhibited excellent halostability with residual activities of more than 70% after pre-incubation for 6 days in 5 M NaCl or 4 M KCl. Substrate specificity analysis revealed that Cel5A and Cel9A specifically cleaved the beta-1,4-glycosidic linkage in cellulose with the highest activity on carboxymethyl cellulose sodium (78.3 and 145.3 U/mg, respectively). Cel5A is an endoglucanase, whereas Cel9A exhibits endo and exo activities. As alkali-activated, thermo-tolerant, and salt-tolerant cellulases, Cel5A and Cel9A are promising candidates for further research and industrial applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []