Identification and Elimination of the Competing N-Acetyldiaminopentane Pathway for Improved Production of Diaminopentane by Corynebacterium glutamicum

2010 
The present work describes the development of a superior strain of Corynebacterium glutamicum for diaminopentane (cadaverine) production aimed at the identification and deletion of the underlying unknown N-acetyldiaminopentane pathway. This acetylated product variant, recently discovered, is a highly undesired by-product with respect to carbon yield and product purity. Initial studies with C. glutamicum DAP-3c, a previously derived tailor-made diaminopentane producer, showed that up to 20% of the product occurs in the unfavorable acetylated form. The strain revealed enzymatic activity for diaminopentane acetylation, requiring acetyl-coenzyme A (CoA) as a donor. Comparative transcriptome analysis of DAP-3c and its parent strain did not reveal significant differences in the expression levels of 17 potential candidates annotated as N-acetyltransferases. Targeted single deletion of several of the candidate genes showed NCgl1469 to be the responsible enzyme. NCgl1469 was functionally assigned as diaminopentane acetyltransferase. The deletion strain, designated C. glutamicum DAP-4, exhibited a complete lack of N-acetyldiaminopentane accumulation in medium. Hereby, the yield for diaminopentane increased by 11%. The mutant strain allowed the production of diaminopentane as the sole product. The deletion did not cause any negative growth effects, since the specific growth rate and glucose uptake rate remained unchanged. The identification and elimination of the responsible acetyltransferase gene, as presented here, display key contributions of a superior C. glutamicum strain producing diaminopentane as a future building block for bio-based polyamides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    92
    Citations
    NaN
    KQI
    []