Turbulence load prediction for manned and unmanned aircraft by means of anticipating differential pressure measurements

2021 
This paper focuses on the prediction of disturbance effects of the vertical acceleration of an aircraft flying in atmospheric turbulence. To this end, 5-hole probes with high-dynamic differential pressure sensors are installed in front of a fixed-wing unmanned aircraft system (UAS) and a manned experimental aircraft to measure the local airspeed and angle of attack of the airflow. Test flights are performed in light, moderate and severe turbulence to assess the anticipating character and the accuracy of the predicted acceleration. Thereby, depending on the flown airspeed, anticipation times up to 0.1 s are observed. For the UAS the prediction accuracy is assessed to be 71.19% for moderate turbulence and 71.05% for severe turbulence, where vertical acceleration disturbances higher than 30 m/s2 are measured. The first manned test flight revealed a prediction accuracy of 61.97%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []