Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles

2016 
A new method of fabrication of calcium carbonate microparticles of ellipsoidal, rhomboidal, and spherical geometries is reported by adjusting the relative concentration ratios of the initial salt solutions and/or the ethylene glycol content in the reaction medium. Morphology, porosity, crystallinity, and loading capacity of synthesized CaCO3 templates were characterized in detail. Particles harboring dextran or the enzyme guanylate kinase were obtained through encapsulation of these macromolecules using the layer-by-layer assembly technique to deposit positively and negatively charged polymers on these differently shaped CaCO3 templates and were characterized by confocal laser scanning fluorescence microscopy, fluorometric techniques, and enzyme activity measurements. The enzymatic activity, an important application of such porous particles and containers, has been analyzed in comparison with the loading capacity and geometry. Our results reveal that the particles’ shape influences morphology of particles...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    47
    Citations
    NaN
    KQI
    []