Postsynthetic Covalent and Coordination Functionalization of Rhodium(II)-Based Metal–Organic Polyhedra

2019 
Metal–organic polyhedra (MOP) are ultrasmall (typically 1–4 nm) porous coordination cages made from the self-assembly of metal ions and organic linkers and are amenable to the chemical functionalization of its periphery; however, it has been challenging to implement postsynthetic functionalization due to their chemical instability. Herein, we report the use of coordination chemistries and covalent chemistries to postsynthetically functionalize the external surface of ≈2.5 nm stable Rh(II)-based cuboctahedra through their Rh–Rh paddlewheel units or organic linkers, respectively. We demonstrate that 12 N-donor ligands, including amino acids, can be coordinated on the periphery of Rh-MOPs. We used this reactivity to introduce new functionalities (e.g., chirality) to the MOPs and to tune their hydrophilic/hydrophobic characteristics, which allowed us to modulate their solubility in diverse solvents such as dichloromethane and water. We also demonstrate that all 24 organic linkers can be postsynthetically func...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    34
    Citations
    NaN
    KQI
    []