Impaired Proteasome Function Activates GATA3 in T Cells and Upregulates CTLA-4: Relevance for Sézary Syndrome

2013 
Highly regulated expression of the negative costimulatory molecule cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T cells modulates T-cell activation and proliferation. CTLA-4 is preferentially expressed in Th2 T cells, whose differentiation depends on the transcriptional regulator GATA3. Sezary syndrome (SS) is a T-cell malignancy characterized by Th2 cytokine skewing, impaired T-cell responses, and overexpression of GATA3 and CTLA-4. GATA3 is regulated by phosphorylation and ubiquitination. In SS cells, we detected increased polyubiquitinated proteins and activated GATA3. We hypothesized that proteasome dysfunction in SS T cells may lead to GATA3 and CTLA-4 overexpression. To test this hypothesis, we blocked proteasome function with bortezomib in normal T cells, and observed sustained GATA3 and CTLA-4 upregulation. The increased CTLA-4 was functionally inhibitory in a mixed lymphocyte reaction (MLR). GATA3 directly transactivated the CTLA-4 promoter, and knockdown of GATA3 messenger RNA and protein inhibited CTLA-4 induction mediated by bortezomib. Finally, knockdown of GATA3 in patient's malignant T cells suppressed CTLA-4 expression. Here we demonstrate a new T-cell regulatory pathway that directly links decreased proteasome degradation of GATA3, CTLA-4 upregulation, and inhibition of T-cell responses. We also demonstrate the requirement of the GATA3/CTLA-4 regulatory pathway in fresh neoplastic CD4+ T cells. Targeting of this pathway may be beneficial in SS and other CTLA-4-overexpressing T-cell neoplasms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    33
    Citations
    NaN
    KQI
    []