Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode

2017 
Graphite is the commercial anode for lithium-ion batteries; however, it fails to extend its success to sodium-ion batteries. Recently, we demonstrated that a low-cost amorphous carbon—soft carbon exhibits remarkable rate performance and stable cycling life of Na-ion storage. However, its Na-ion storage mechanism has remained elusive, which has plagued further development of such carbon anodes. Here, we remedy this shortfall by presenting the results from an integrated set of experimental and computational studies that, for the first time, reveal the storage mechanism for soft carbon. We find that sodium ions intercalate into graphenic layers, leading to an irreversible quasi-plateau at ∼0.5 V versus Na+/Na as well as an irreversible expansion seen by in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD). Such a high-potential plateau is correlated to the defective local structure inside the turbostratic stacking of soft carbon and the associated high-binding energies with Na ions, sug...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    113
    Citations
    NaN
    KQI
    []