A bactericide peptide changing the static and dilatational surface elasticity properties of zwitterionic lipids at the air-water interface: Relationship with the thermodynamic, structural and morphological properties.

2021 
Abstract In this paper, we studied how different hydrophilicity degrees of the polar groups of the lipids dipalmitoylphosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) influence the interaction of the antibiotic peptide vancomycin (VC), affecting the physicochemical properties of the monolayers, including thermodynamic, rheological, structural and morphological ones. Lipid Langmuir monolayers were prepared at air-water interfaces with VC aqueous solution as subphase and characterized with tensiometry, Brewster angle microscopy, infrared spectroscopy, dilatational, and interfacial shear rheology. The presence of PC or PE groups as polar head groups of the phospholipid monolayers modulated the interaction of VC adsorbing from the aqueous subphase since for DPPC, vancomycin condenses the monolayer, making it less stable, fluid, and more disordered. In contrast, for DPPE, vancomycin expands the monolayer, making it more stable, keeping the compressibility, and leading to the formation of interfacial aggregates, which are not observed for DPPC. We concluded thatelectrostatic interactions induced the insertion of the peptide into the polar heads of the monolayers (DPPE), while hydrophobic interactions, in addition to ion-dipole interactions, induced the adsorption of the peptide onto the polar head of the monolayers (DPPC).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    3
    Citations
    NaN
    KQI
    []