Broadband Fast-Wave Propagation in a Non-Foster Circuit Loaded Waveguide

2014 
Frequency independent fast-wave (FW) propagation with phase velocity greater than the speed of light can be ideally realized in a dielectric medium whose relative permittivity is positive, but less than 1. Conventionally, FW propagation is implemented by non-TEM waveguides or antiresonance-based metamaterials, which suffers from the narrow bandwidth due to the dispersion. In contrast, non-Foster circuits provide a brand new method for reducing the dispersion so as to broaden the bandwidth. This paper demonstrates broadband FW propagation in a microstrip line that is periodically loaded with non-Foster circuits. Discrete transistor-based non-Foster circuits functioning as negative capacitors are successfully designed with the novel modified negative impedance converter circuits. A -10-pF negative capacitor over a bandwidth of 10-150 MHz has been implemented. The fabricated circuits have been integrated into a microstrip line to form a FW waveguide. The retrieved phase velocity of the effective medium from the measured S-parameters characterizes a stable and causal FW medium with constant phase velocity of 1.2c from 60 to 120 MHz, and this has been further verified by Kramers-Kronig relations and the near-field measurements along the waveguide. In conclusion, a stable, causal, and broadband FW waveguide has been achieved by means of transistor-based non-Foster circuits. The implemented broadband FW propagation can potentially be applied in broadband leaky-wave antennas and cloaking techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    38
    Citations
    NaN
    KQI
    []