Protonation-Dependent Sequencing of 5-Formylcytidine in RNA

2021 
Chemical modification of cytidine in non-coding RNAs plays a key role in regulating translation and disease. However, the distribution and dynamics of many of these modifications remains unknown due to a lack of sensitive site-specific sequencing technologies. Here we report a protonation-dependent sequencing reaction for detection of 5-formylcytidine (5fC) and 5-carboxycytidine (5caC) in RNA. First, we evaluate how protonation combined with electron-withdrawing substituents alters the molecular orbital energies and reduction of modified cytidine nucleosides, highlighting 5fC and 5caC as reactive species. Next, we apply this reaction to detect these modifications in synthetic oligonucleotides as well as endogenous human tRNA. Finally, we demonstrate the utility of our method to characterize a patient-derived model of 5fC-deficiency, where it enables facile monitoring of both pathogenic loss and exogenous rescue of NSUN3-dependent 5fC within the wobble base of human mitochondrial tRNAMet. These studies showcase the ability of protonation to enhance the reactivity and sensitive detection of 5fC in RNA, and provide a molecular foundation for applying optimized sequencing reactions to better understand the role of oxidized RNA cytidine nucleobases in disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []