Cardiac-Specific Loss of N-Cadherin Leads to Alteration in Connexins With Conduction Slowing and Arrhythmogenesis

2005 
The remodeling of ventricular gap junctions, as defined by changes in size, distribution, or function, is a prominent feature of diseased myocardium. However, the regulation of assembly and maintenance of gap junctions remains poorly understood. To investigate N-cadherin function in the adult myocardium, we used a floxed N-cadherin gene in conjunction with a cardiac-specific tamoxifen-inducible Cre transgene. The mutant animals appeared active and healthy until their sudden death 2 months after deleting N-cadherin from the heart. Electrophysiologic analysis revealed abnormal conduction in the ventricles of mutant animals, including diminished QRS complex amplitude consistent with loss of electrical coupling in the myocardium. A significant decrease in the gap junction proteins, connexin-43 and connexin-40, was observed in N-cadherin-depleted myocytes. Perturbation of connexin function resulted in decreased ventricular conduction velocity, as determined by optical mapping. Our data suggest that perturbation of the N-cadherin/catenin complex in heart disease may be an underlying cause, leading to the establishment of the arrythmogenic substrate by destabilizing gap junctions at the cell surface. (Circ Res. 2005;97:474-481.)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    205
    Citations
    NaN
    KQI
    []