A statistical approach to the timing-yield optimization of pipeline circuits

2007 
The continuous miniaturization of semiconductor devices imposes serious threats to design robustness against process variations and environmental fluctuations. Modern circuit designs may suffer from design uncertainties, unpredictable in the design phase or even after manufacturing. This paper presents an optimization technique to make pipeline circuits robust against delay variations and thus maximize timing yield. By trading larger flip-flops for smaller latches, the proposed approach can be used as a post-synthesis or post-layout optimization tool, allowing accurate timing information to be available. Experimental results show an average of 31% timing yield improvement for pipeline circuits. They suggest that our method is promising for high-speed designs and is capable of tolerating clock variations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []