Visual Analytics and Similarity Search - Interest-based Similarity Search in Scientific Data

2021 
Visual Analytics enables solving complex analytical tasks by coupling interactive visualizations and machine learning approaches. Besides the analytical reasoning enabled through Visual Analytics, the exploration of data plays an essential role. The exploration process can be supported through similarity-based approaches that enable finding similar data to those annotated in the context of visual exploration. We propose in this paper a process of annotation in the context of exploration that leads to labeled vectors-of-interest and enables finding similar publications based on interest vectors. The generation and labeling of the interest vectors are performed automatically by the Visual Analytics system and lead to finding similar papers and categorizing the annotated papers. With this approach, we provide a categorized similarity search based on an automatically labeled interest matrix in Visual Analytics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []