Phenotypic differences in subclones and long‐term cultures of clonally derived rat bone cell lines
1986
Previous studies with clonally derived populations of cells have shown that cells released from embryonic rat calvaria by enzymatic digestion are heterogeneous with respect to their hormone responsiveness, morphology, and production of matrix components [Aubin JE et al; J. Cell Biol 92:452, 1982].Several of these clonal populations have been used to study the effects of long-term culture and inter- and intraclonal cell heterogeneity. During continuous subculture, marked changes in collagen synthesis were observed in two clonal populations. Both of these clones were originally responsive to parathyroid hormone (PTH) and synthesized primarily type I collagen with small amounts of type III and V collagens, although one clone (RCJ 3.2) had a fibroblastic morphology whereas the second clone (RCB 2.2) displayed a more polygonal shape. Following routine subculture over 3 yr, clone RCB 2.2 was found to synthesize exclusively αl(I)-trimer and not other interstitial collagens. When the same cells were maintained at confluence for 1-2 wk, however, they also synthesized type III collagen. Whereas RCJ 3.2 did not show such dramatic changes in collagen synthesis after long-term subculture, two subclones derived from RCJ 3.2 were found to synthesize almost exclusively either type III collagen (RCJ 3.2.4.1) or type V collagen (RCJ 3.2.4.4). Immunocytochemical staining indicated that both subpopulations also produced type IV collagen, laminin, and basement membrane proteoglycan, proteins that are typically synthesized by epithelial cells. The differences in collagen expression by the various clonal cell populations were accompanied by qualitative and quantitative differences in other secreted proteins and differences in cell morphology. The results demonstrate both the inter- and intraclonal heterogeneity of connective tissue cells and their diverse potentiality with respect to extracellular matrix synthesis.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
35
Citations
NaN
KQI