One-step synthesis of pegylated gold nanoparticles with tunable surface charge

2013 
The present work reports a rapid, simple and efficient one-step synthesis and detailed characterisation of stable aqueous colloids of gold nanoparticles (AuNPs) coated with unmodified poly(ethylene)glycol (PEG) molecules of different molecular weights and surface charges. By mixing and heating aqueous solutions of PEG with variable molecular chain and gold(III) chloride hydrate (HAuCl4) in the presence of NaOH, we have successfully produced uniform colloidal 5 nm PEG coated AuNPs of spherical shape with tunable surface charge and an average diameter of 30nm within a few minutes. It has been found out that PEGylated AuNPs provide optical enhancement of the characteristic vibrational bands of PEG molecules attached to the gold surface when they are excited with both visible (532 nm) and NIR (785 nm) laser lines. The surface enhanced Raman scattering (SERS) signal does not depend on the length of the PEG molecular chain enveloping the AuNPs, and the stability of the colloid is not affected by the addition of concentrated salt solution (0.1M NaCl), thus suggesting their potential use for in vitro and in vivo applications. Moreover, by gradually changing the chain length of the biopolymer, we were able to control nanoparticles' surface charge from -28 to -2mV, without any modification of the Raman enhancement properties and of the colloidal stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    34
    Citations
    NaN
    KQI
    []