Embedding trend into seasonal temperature forecasts through statistical calibration of GCM outputs

2020 
Accurate and reliable seasonal climate forecasts are frequently sought by climate‐sensitive sectors to support decision‐making under climate variability and change. Temperature trend is discernible globally over the past decades, but seasonal forecasts produced by a global climate model (GCM) generally underestimate such trend. Current statistical methods used for calibrating seasonal climate forecasts mostly do not explicitly account for climate trends. Consequently, the calibrated forecasts also fail to capture the observed trend. Solving this problem can enhance user confidence in seasonal climate forecasts. In this study, we extend the capability of the Bayesian joint probability (BJP) modelling approach for statistical calibration of seasonal climate forecasts. A trend component is introduced into the BJP algorithm for embedding the observed trend into calibrated ensemble forecasts. We apply the new model (named BJP‐t) to three test stations in Australia. Seasonal forecasts of daily maximum temperatures from the SEAS5 model, operated by the European Centre for Medium‐Range Weather Forecasts (ECMWF), are calibrated and evaluated. The BJP‐t calibrated ensemble forecasts can reproduce the observed trend, when the raw ensemble forecasts and the BJP calibrated ensemble forecasts both fail to do so. The BJP‐t calibration leads to more skilful, more reliable and sharper forecasts than the BJP calibration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    3
    Citations
    NaN
    KQI
    []