Nanometric deformations of thin Nb layers under a strong electric field using soft x-ray laser interferometry

2005 
We present measurements of in situ nanometric-resolution topographical modifications of thin niobium layers subjected to strong electric fields. The Nb layers, deposited on a fused silica substrate, are interferometrically flash probed using soft x-ray laser (XRL) at the wavelength of 21.2nm. Its pulses are reflected by the probed sample under grazing incidence angle, and the information about surface deformation is obtained by a Fresnel wave-front-division interferometer. It was experimentally established that the probing pulses at the soft x-ray wavelength do neither produce any measurable photoelectric-field emission, nor alter the topographical features of the probed surface. The examined Nb electrodes were periodically probed while the electric field was increased up to 80MV∕m, and alterations of their topographical characteristics with a resolution of ∼2nm in the relief elevation were obtained. It was found that behavior of the Nb layer strongly depends on the polarity of the applied voltage. Only s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    5
    Citations
    NaN
    KQI
    []