Comparison of Segmentation-Free and Segmentation-Dependent Computer-Aided Diagnosis of Breast Masses on a Public Mammography Dataset

2020 
Abstract Purpose To compare machine learning methods for classifying mass lesions on mammography images that use predefined image features computed over lesion segmentations to those that leverage segmentation-free representation learning on a standard, public evaluation dataset. Methods We apply several classification algorithms to the public Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM), in which each image contains a mass lesion. Segmentation-free representation learning techniques for classifying lesions as benign or malignant include both a Bag-of-Visual-Words (BoVW) method and a Convolutional Neural Network (CNN). We compare classification performance of these techniques to that obtained using two different segmentation-dependent approaches from the literature that rely on specific combinations of end classifiers (e.g. linear discriminant analysis, neural networks) and predefined features computed over the lesion segmentation (e.g. spiculation measure, morphological characteristics, intensity metrics). Results We report area under the receiver operating characteristic curve (AZ) values for malignancy classification on CBIS-DDSM for each technique. We find average AZ values of 0.73 for a segmentation-free BoVW method, 0.86 for a segmentation-free CNN method, 0.75 for a segmentation-dependent linear discriminant analysis of Rubber-Band Straightening Transform features, and 0.58 for a hybrid rule-based neural network classification using a small number of hand-designed features. Conclusions We find that malignancy classification performance on the CBIS-DDSM dataset using segmentation-free BoVW features is comparable to that of the best segmentation-dependent methods we study, but also observe that a common segmentation-free CNN model substantially and significantly outperforms each of these (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    3
    Citations
    NaN
    KQI
    []