Optimizing environmental pollution controls in response to textile dyeing sludge, incineration temperature, CaO conditioner, and ash minerals

2021 
Abstract The dynamics of heavy metal speciation and flue gas emissions during the incineration of textile dyeing sludge (TDS) were quantified as a function of four addition levels of CaO, incineration temperature, and ash minerals using thermogravimetric analysis and experimental tube furnace. The TDS incineration was most improved with the addition of 10% CaO. The increased fractions of CaO coupled with the ash minerals changed the retention behaviors of eight heavy metals. The CaO addition increased the Cu, Zn, As, and Pb retentions, did not significantly change Cr, Mn, and Cd, but decreased the Ni retention. The CaO addition enhanced the speciation stability of Cu and transferred the Cr, Cd, and As speciations to the mobile fractions. The increased temperature weakened the Zn and Pb retentions and the speciation stabilities of As and Pb and turned the Cr, Mn, Ni, Cu, Zn, and Cd speciations into the stable fractions. The CaO addition inhibited HCN, NO, NO2, COS, SO2, CS2, and SO3 emissions from the TDS incineration. Neural network-based multi-response optimization was implemented to determine the optimal operational temperature for the TDS incineration and the reduction of the 12 gas emissions. The range of 640–755 °C with(out) 5% CaO appeared to be most beneficial in terms of both environmental quality and economic efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    3
    Citations
    NaN
    KQI
    []