Reversible Ion‐Conducting Switch in a Novel Single‐Ion Supramolecular Hydrogel Enabled by Photoresponsive Host–Guest Molecular Recognition

2019 
: A novel ion-conducting supramolecular hydrogel with reversible photoconductive properties in which the azobenzene motif, α-cyclodextrin (α-CD), and ionic liquid are grafted onto the gel matrix is reported. Host-guest interactions with different association constants between α-CD and azobenzene or the anionic part of the ionic liquid can be readily tuned by photoinduced trans-cis isomerization of the azobenzene unit. When irradiated by 365 nm light, α-CD prefers to form a complex with the anionic part of the ionic liquid, resulting in decreased ionic mobility and thus high resistance of the hydrogel. However, under 420 nm light irradiation, a more stable complex is again formed between α-CD and trans-azobenzene, thereby releasing the bound anions to regenerate the low-resistive hydrogel. As such, remote control of the ionic conductivity of the hydrogel is realized by simple host-guest chemistry. With the incorporation of a logic gate, this hydrogel is able to reversibly switch an electric circuit on and off by light irradiation with certain wavelengths. The concept of photoswitchable ionic conductivity of a hydrogel mediated by competitive molecular recognition is potentially promising toward the fabrication of optoelectronic devices and applications in bioelectronic technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    93
    Citations
    NaN
    KQI
    []