Enhanced carbon dioxide electroreduction to carbon monoxide over defect rich plasma-activated silver catalysts

2017 
Efficient, stable catalysts with high selectivity for a single product are essential to making the electroreduction of CO2 a viable route to the synthesis of industrial feedstocks and fuels. We reveal how a plasma oxidation pre-treatment can lead to an enhanced content of low-coordinated active sites which dramatically lower the overpotential and increase the activity of CO2 electroreduction to CO. At -0.6 V vs. RHE, more than 90% Faradaic efficiency towards CO could be achieved on a pre-oxidized silver foil. While transmission electron microscopy and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations show how the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields results in a drastic decrease in the overpotential for the electroreduction of CO2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    127
    Citations
    NaN
    KQI
    []