A new set of composite, non-redundant electroencephalogram measures of non-rapid eye movement sleep based on the power law scaling of the Fourier spectrum

2020 
A simple method for deriving composite, non-redundant measures of non-rapid eye movement (NREM) sleep electroencephalogram (EEG) is developed on the basis of the power law scaling of the Fourier spectra. Measures derived are the spectral intercept, the slope (spectral exponent), as well as the maximal whitened spectral peak amplitude and frequency in the sleep spindle range. As a proof of concept, we apply these measures on a large sleep EEG dataset (N = 175; age range: 17-60 years) with previously demonstrated effects of age, sex and intelligence. As predicted, aging is associated with decreased overall spectral slopes (increased exponents) and whitened spectral peak amplitudes in the spindle frequency range. In addition, age associates with decreased sleep spindle spectral peak frequencies in the frontal region. Women were characterized by higher spectral intercepts and higher spectral peak frequencies in the sleep spindle range. No sex differences in whitened spectral peak amplitudes of the sleep spindle range were found. Intelligence correlated positively with whitened spectral peak amplitudes of the spindle frequency range in women, but not in men. Last, age-related increases in spectral exponents did not differ in subjects with average and high intelligence. Our findings replicate and complete previous reports in the literature, indicating that the number of variables describing NREM sleep EEG can be effectively reduced in order to overcome redundancy and Type I statistical errors in future electrophysiological studies of sleep.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []